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Introduction
I Model covariates influence on time-to-event data.

I High number of individuals.

I Many covariates : model has to select good ones.

I Time varying data.

I Individual characteristics
change over time

I Functional value only
known at some points of
time.

I Observation times differ for
individuals & covariates.

Survival Analysis

Survival function :

S(t) = P (T ≥ t|X(s), s ≤ t)

Hazard function :

λ(t) = lim
∆t→0

P (t ≤ T ≤ t+ ∆t|T ≥ t,X(s), s ≤ t)
∆t

λ(t) is the instantaneous risk that an event occurred at time t, given co-
variates and knowing that the event did not occur before.

We consider the Cox model [1]
where covariates X and coeffi-
cients β depend on time.

λ?(t|X(t)) = exp
(
X(t)β?(t)

)

Stochastic Gradient Descent
I Converges faster than full gradient algorithm to a weak solution.

I Can be used for online learning.

Best optimization strategy is to start with some SGD steps and complete
with a full gradient descent algorithm.

Problem with Cox proportional likelihood

Cox proportional likelihood : L(θ) =
1

n

∏
i∈D

exp(xTi θ)∑
j∈Ri

exp(xTj θ)

Individual gradient of minus log-likelihood :

∆fi(θ) = −xi +
∑
j∈Ri

xj exp(xTj θ)∑
k∈Ri

exp(xTk θ)

I Each SGD step cost O(np) operations.

I It only costs O(p) for regression and logistic regression.

Method
Using counting process notations, minus log-likelihood is given by :

`n(β) = − 1

n

n∑
i=1

{∫ τ

0

Xi(t)β(t)dNi(t)−
∫ τ

0

Yi(t) exp
(
Xi(t)β(t)

)
dt
}
,

see [2] for details.
Integral approximation can be done using numerical algorithm. This al-
lows considering splines approximation for coefficients and/or data.

Piecewise constant function

To speed up the evaluation process
we consider piecewise constant functions : βj(t) =

L∑
l=1

βj,l1(Il)(t)

This gives us pL coefficients to estimate.

`n(β) = − 1

n

n∑
i=1

L∑
l=1

(
Xi,lβlNi,l(Il)− exp

(
Xi,lβl

) ∫
Il

Yi(t)ds

)
.

To avoid the curse of dimensionality we introduce a penalty which com-
bines Lasso and Total Variation.

‖β‖gTV,γ̂ = λ

p∑
j=1

(
γ̂j,1|βj,1|+

L∑
l=2

γ̂j,l|βj,l − βj,l−1|
)

I L and γj,l have theoretical values.

I λ is set using cross-validation

Application
Model is applied in video games industry to model design influence on
player retention.

I Player doing a lot of activity 1 tends to play longer than others.

I Activity 2 has no impact on player retention in the first hours.

I After 10 hours players who practice Activity 2 have a higher proba-
bility to stop playing than others.

R package
I Full C++ code interfaced with R[3] via RCpp[4]

I Deal with data files bigger than RAM.
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