

O TOUR D'HORIZON

- Rappels (ou pas) sur les probabilités
- Statistiques descriptives
- Inférence statistique : intervalles de confiance, TCL, ...
- Tests statistiques
- Régression et classification
- Programmation R

1₁ QUESTION

Soit un générateur de nombres aléatoires à valeur {1, 2, 3, 4, 5, 6} Quelles sont les chances que le résultat soit 6 ?

Aléatoire ≠ Équiprobable

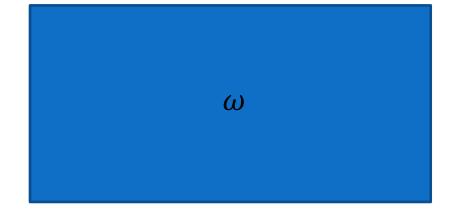
1₂ PROBABILITÉ

• Soit *A* un évènement, alors

$$0 \le P(A) \le 1$$

Rappel:
$$60\% = \frac{60}{100} = 0.60$$

UNIVERS DES POSSIBLES


• On note souvent ω l'ensemble de tous les évènements et l'on a

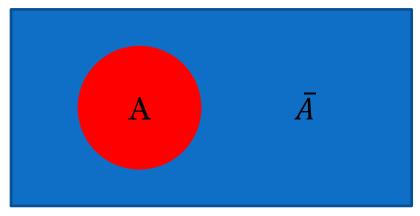
$$P(\omega) = 1$$

Sur un dès à 6 faces $\omega = \{1, 2, 3, 4, 5, 6\}$

$$P(\omega) = P(\overline{\omega} = 1) + \cdots$$

$$P(\overline{\omega} = 6) = 1$$

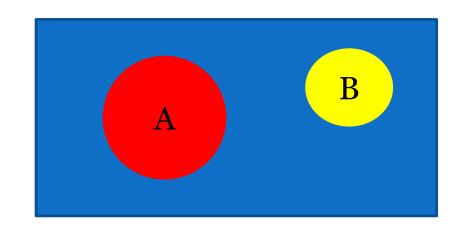
14 COMPLÉMENTAIRE


• Soit A un évènement, on note \overline{A} son complémentaire

$$P(\bar{A}) = 1 - P(A)$$

Exemple:

A : le résultat du lancer est pair.

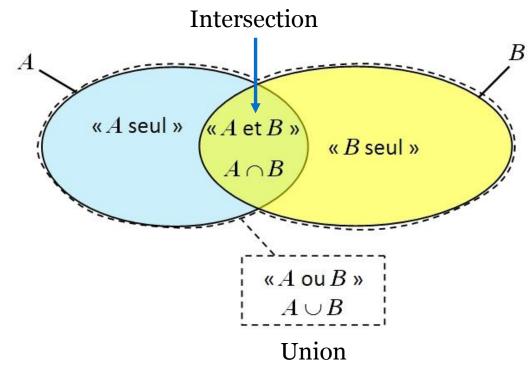

 \bar{A} : le résultat du lancer est impair.

SOMME D'ÉVÈNEMENTS INDÉPENDANTS

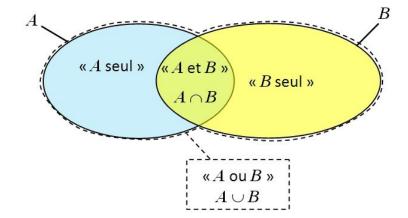
Soit A et B deux évènements indépendant, alors

$$P(A \cup B) = P(A) + P(B)$$

UNION ET INTERSECTION



$$A = \{1,2,3\}$$


$$B = \{2,4,6\}$$

$$A \cup B = \{1,2,3,4,6\}$$

$$A \cap B = \{2\}$$

PROBABILITÉS TOTALES

Formule des probabilités totales :

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

PROBABILITÉS TOTALES

Dans un jeu de 32 carte, quelle est la probabilité de tirer un roi ou un cœur ?

- + La probabilité de tirer un roi : 4/32
- + La probabilité de tirer un cœur : 1/4=8/32
- La probabilité de tirer le roi de cœur : 1/32

Résultat : 11/32

PROBABILITÉS TOTALES

- 1) Calculez $P(\overline{A \cup B})$
- 2) Calculez $P(\overline{A \cap B})$

Faire un dessin

Réponses:

- 1) $\bar{A} \cap \bar{B}$
- 2) $\bar{A} \cup \bar{B}$

To do: Exercice 1

PROBABILITÉS CONDITIONNELLES

La probabilité conditionnelle de A sachant B est notée :

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Formule de Bayes:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$$

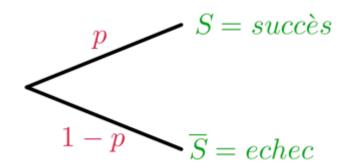
Formule des probabilités totales :

$$\mathbb{P}(A) = \sum_{i \in I} \mathbb{P}(A|B_i)\mathbb{P}(B_i).$$


To do: exercice 2

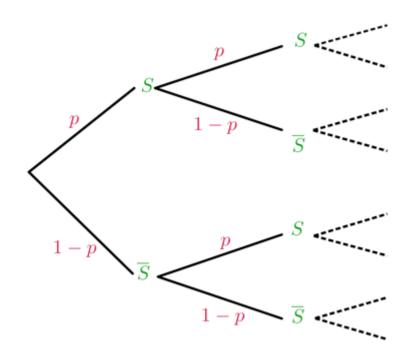
Deux évènements A et B sont indépendants si et seulement si :

$$P(A|B) = P(A)$$


Ce qui est équivalent à

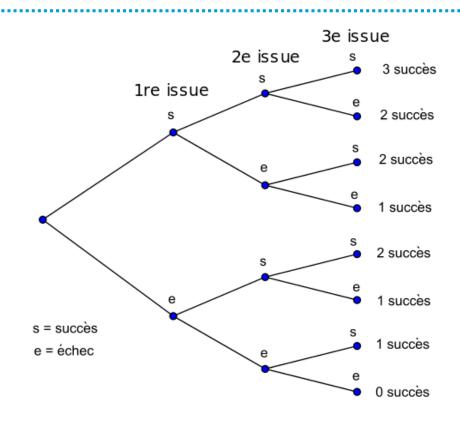
$$P(A \cap B) = P(A) P(B)$$

Si je lance une pièce, quelles sont mes chances qu'elle tombe sur pile?


$$\mathbb{P}(X = 1) = 1 - \mathbb{P}(X = 0) = p.$$

ARBRE DE BERNOULLI

Quelles sont les chances qu'elle tombe 2 fois sur pile?


D'avoir une fois pile et une fois face?

LOI BINOMIALE

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

To do: exercice 3

I₉ LOTO

Quelle est la probabilité de gagner à l'Euro Millions?

- 5 numéros entre [1,50]
- 2 numéros entre [1,11]

$${50 \choose 5} * {11 \choose 2} = \frac{50 * 49 * 48 * 47 * 46}{5 * 4 * 3 * 2 * 1} * \frac{11 * 10}{2 * 1}$$
$$= 116 531 800$$

Sachant que j'ai joué 100 fois au loto par le passé, quelles sont mes chances aujourd'hui?

To do: Ex 4

I₁₄ EXERCICE TYPE BAC

Un joueur débute un jeu vidéo et effectue plusieurs parties successives.

On admet que:

- la probabilité qu'il gagne la première partie est de 0,1
- s'il gagne une partie, la probabilité de gagner la suivante est égale à 0,8
- s'il perd une partie, la probabilité de gagner la suivante est égale à 0,6

On note, pour tout entier naturel n non nul:

- Gn l'évènement « le joueur gagne la n-ième partie »
- pn la probabilité de l'évènement Gn

On a donc p1 = 0, 1.

- 1. Montrer que p2 = 0, 62. On pourra s'aider d'un arbre pondéré.
- 2. Le joueur a gagné la deuxième partie. Calculer la probabilité qu'il ait perdu la première.
- 3. Calculer la probabilité que le joueur gagne au moins une partie sur les trois premières parties.

Correction: Exercices\Correction proba conditionnelles.docx

To do : Ex 5

MAT (07170)

Soit une variable aléatoire X prenant pour valeur $x_1, ..., x_n$ avec probabilité $p_1, ..., p_n$, alors l'espérance de X est définie comme

$$\mathbb{E}[x] = x_1 p_1 + x_2 p_2 + \dots + x_n p_n$$

$$\mathbb{E}[x] = \sum_{i} x_i p_i$$

Calculer l'espérance d'un lancer de dé.

Calculer l'espérance de la somme de 2 lancers de dés.

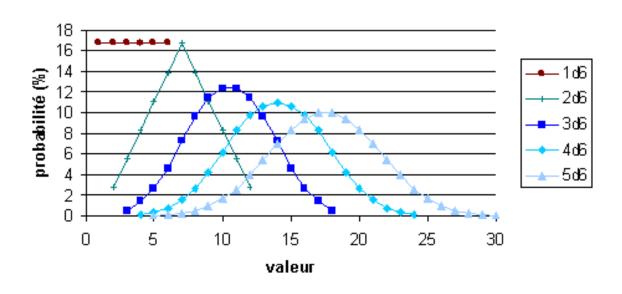
$$\mathbb{E}[x] = x_1 p_1 + x_2 p_2 + \dots + x_n p_n$$

Calculer l'espérance d'un lancer de dé.

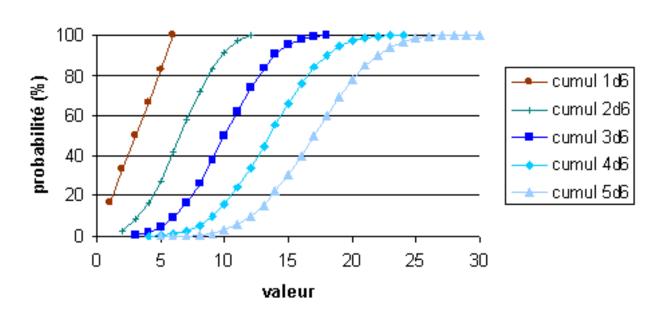
$$m = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3, 5.$$

I_{19}

ESPERANCE D'UNE LOI DISCRETE


Calculer l'espérance de la somme de 2 lancers de dés.

Somme des dés	2	3	4	5	6	7	8	9	10	11	12
Probabilité	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36


Probabilité d'avoir une valeur

011011100

Probabilité de faire moins qu'une valeur

(U101110)

Distribution de 7 dés de jeux de rôle

- Calculez l'espérance d'un lancer de dés
- Calculez les probabilités associées au produit de 2 lancers de dés.

123 VARIANCE D'UNE LOI DISCRETE

Soit une variable aléatoire X prenant pour valeur x_1, \dots, x_n avec probabilité p_1, \dots, p_n , alors la variance de X est définie comme

$$Var[x] = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mathbb{E}[x])^2$$

124 EXPECTED VALUE

- Quelle est l'attaque offrant les meilleurs dégâts au long terme?
- Si l'ennemi a 15HP, cette attaque est elle toujours la meilleure?

Attack Name	Chance of hitting	Damage
Wind	100%	4
Fireball	80%	5
Lighting bolt	20%	40

Code: Exercices\Expected value.xlsx

To do: Ex 8

I₁₂ LEARNING R

Pour les lois plus complexes, nous allons procéder par simulations.

R est un langage largement utilisé par la communauté statistique, voici un tutoriel pour en apprendre les bases.

To do: http://tryr.codeschool.com/

or

https://www.datacamp.com

Simulation Monte-Carlo

116 COLLECTIONNITE

Soit un jeu de carte dans lequel il est possible de collectionner N cartes différentes. Sachant que l'on possède déjà K cartes différentes, quelle est la probabilité d'en obtenir une nouvelle que l'on ne possède pas déjà?

Code R:

Exercices\collectionneur.R

To do : Ex 9

7₁₅ FORGEMAGIE

- Quelle est la probabilité d'overmager un item avec une rune PA (proba=1/100) au bout de K tentatives?
 - K=100?
 - Trouver le K tel que la proba soit de ½
 - Simulation des revenus de l'agent en fonction de sa mise de départ et des prix proposés. Puis Monte-Carlo E[gain], P[faillite]

ALL PROPERTY OF THE PARTY OF TH

- Idem pour la probabilité de Drop un item rare.
 - Quelle est la distribution des joueurs possédant l'item au bout de n jours, si ils ne peuvent attaquer le monstre qu'une fois par jour?

Code R: Exercices\proba exo item.R To do: Ex 10 et 11

1₂₅ LOIS USUELLES

- Slides <u>modeles\Slides Lois usuelles.pdf</u>
- Trouver une application Design à chacune d'elle.

KEY POINTS

- RANDOM ≠ UNKNOWN
- LE DESIGNER MAITRISE L'ALEATOIRE!

QUELQUES DÉFINITIONS

- Population : ensemble d'éléments sur lequel portent les observations
- Individu : élément d'une population
- Variable : Propriété étudiée dans une étude statistique
 - Qualitatif. Ex: Classe du personnage, sexe
 - Quantitatif
 - Discret : Nombre d'items possédés
 - Continu : Position du joueur, Points de vie.

STATISTIQUES ÉLÉMENTAIRES

Pour x calculez:

- La moyenne
- La médiane
- La Variance
- L'écart-type

https://thibaultallart.github.io/teaching/statistics/correlation_Anscombe.txt

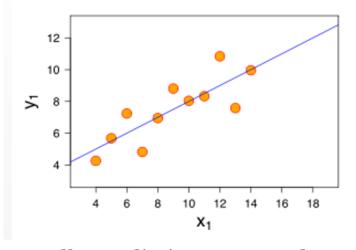
STATISTIQUES ÉLÉMENTAIRES

10 8.04 8 6.95 13 7.58 9 8.81 11 8.33
13 7.58 9 8.81 11 8.33
9 8.81 11 8.33
11 8.33
14 9.96
6 7.24
4 4.26
12 10.84
7 4.82
5 5.68

Pour y calculez:

- La moyenne
- La médiane
- La Variance
- L'écart-type

Calculez ensuite la corrélation entre x et y.


Code R : <u>Exercices\Corrélation et scatter plot.R</u>

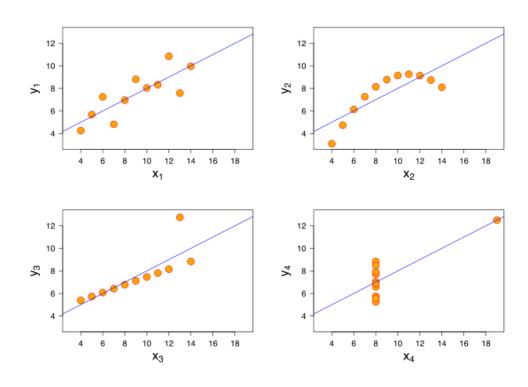
REGRESSION LINEAIRE

X	y
10	8.04
8	6.95
13	7.58
9	8.81
11	8.33
14	9.96
6	7.24
4	4.26
12	10.84
7	4.82
5	5.68

$$y_1 = ax + b$$

Que valent a et b?

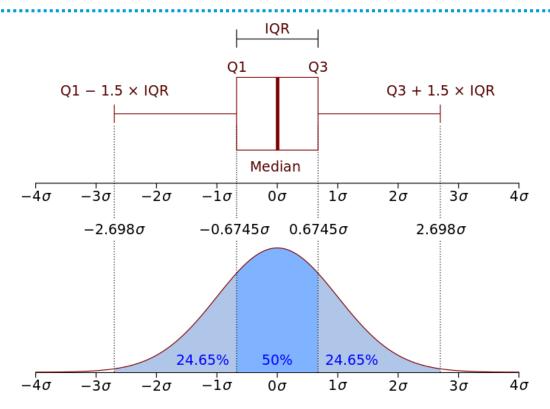
Quelle prediction peut on donner pour $x_1=12$?


Pour $x_1 = 18$?

Refaire les calculs pour B, C et D.

A B		C		D			
X	y	X	y	X	y	X	y
10	8.04	10	9.14	10	7.46	8	6.58
8	6.95	8	8.14	8	6.77	8	5.76
13	7.58	13	8.74	13	12.74	8	7.71
9	8.81	9	8.77	9	7.11	8	8.84
11	8.33	11	9.26	11	7.81	8	8.47
14	9.96	14	8.1	14	8.84	8	7.04
6	7.24	6	6.13	6	6.08	8	5.25
4	4.26	4	3.1	4	5.39	19	12.5
12	10.84	12	9.13	12	8.15	8	5.56
7	4.82	7	7.26	7	6.42	8	7.91
5	5.68	5	4.74	5	5.73	8	6.89

Property	Value
Mean of x in each case	9 (exact)
Sample <u>variance</u> of x in each case	11 (exact)
Mean of y in each case	7.50 (to 2 decimal places)
Sample variance of y in each case	4.122 or 4.127 (to 3 decimal places)
Correlation between x and y in each case	o.816 (to 3 decimal places)
Linear regression line in each case	y = 3.00 + 0.500x (to 2 and 3 decimal places, respectively)


Affichez sous R les 4 graphiques de y~x et la droite de régression linéaire. Que constatez vous?

LOI NORMALE

001011100

11112 LOI NORMALE

http://sites.uclouvain.be/selt/shiny/xzp/

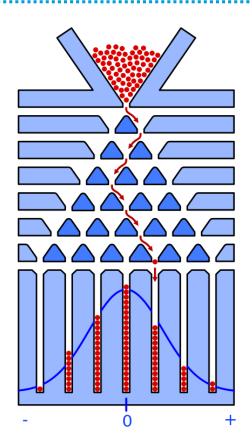
11113 UTILITÉ DES STATISTIQUES

J'ai lancé une pièce 100 fois et elle est tombée 59 fois sur pile. Peut on affirmer qu'elle est truquée?

UTILITÉ DES STATISTIQUES

J'ai lancé une pièce 100 fois et elle est tombée 59 fois sur pile. Peut on affirmer **avec un taux d'erreur de 5%** qu'elle est truquée?

Théorème Central Limite


Soient X_1, \dots, X_n des variables aléatoires réelles indépendantes, de même loi

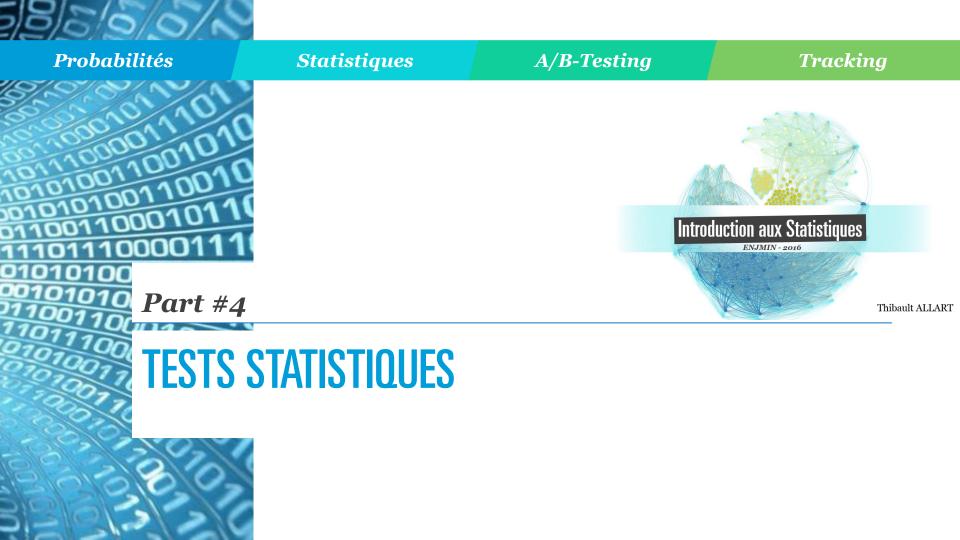
$$\frac{X_1 + \ldots + X_n - n\mu}{\sigma \sqrt{n}} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1) \quad lorsque \quad n \to +\infty.$$

En déduire une statistique de test d'une proportion

CONVERGENCE DE LA LOI BINOMIALE

Code R:

Exercices\TCL.R


Voir somme et produit de lois.R

III INTERVALLES DE CONFIANCE

THE PROPERTY OF THE PARTY OF TH

•
$$IC_{95\%} = \left[\bar{x} - 1,96\frac{\sigma_x}{\sqrt{n}}; \bar{x} + 1,96\frac{\sigma_x}{\sqrt{n}}\right]$$

Shiny IC: http://sites.uclouvain.be/selt/shiny/ic/

TV₂ TESTS STATISTIQUES

Il existe une multitude de tests statistiques. Les plus utilisés sont sur : http://marne.u707.jussieu.fr/biostatgv/?module=tests

Test de Student sous R :

Exercices\Test de Student.R